Invertibility of 2×2 Matrices

Theorem 1: Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then A is invertible if and only if $ad - bc \neq 0$.

Proof Part 1: Show that if $ad - bc \neq 0$ then A is invertible.

$$B = \frac{1}{ad-bc} \begin{bmatrix} a & b \\ -c & a \end{bmatrix}$$

$$AB = \frac{1}{ad-bc} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$= \frac{1}{ad-bc} \begin{bmatrix} ad-bc & -ad+ab \\ cd-cd & ad-bc \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Conclusion A is incentable and
$$A^{-1} = B$$

Proof Part 2: Show that if ad - bc = 0 then A is not invertible.

Hint: If there exists a *nonzero* vector \boldsymbol{x} in null(A), then A is not invertible.

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, Suppose $ad-bc = 0$.
Case 1: $a = c = 0$
 $\begin{bmatrix} 0 & b \\ 0 & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \overline{0}$
Case 2: $a \neq \emptyset$
 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} -b \\ a \end{bmatrix} = \begin{bmatrix} -ba + ba \\ ad - bc \end{bmatrix} = \overline{0}$

$$\begin{array}{c} cose^{3} & c \neq \varphi \\ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d \\ -c \end{bmatrix} = \begin{bmatrix} a & b & b \\ a & b & c \\ c & d \end{bmatrix} = \overrightarrow{o}.$$

Definition: Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. The *determinant* of A is defined by $det(A) = ad - bc$.

Corollary 1: Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then A is invertible if and only if $\det(A) \neq 0$.

Example: Which of the following matrices (if any) are invertible? Explain.

•
$$\begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$$
 det $\left(\begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix} \right) = (1)(0) - (2)(-1) = 2 \neq 0$
A is inventule by covollary 1.

•
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 det $\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right)$ = $(1)(4) - (3)(2) = -2 \neq 0$
A is invertable by corollary 1.

•
$$\begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$$
 del $\left(\begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix} \right) \approx \left(1 \right) \left(2 \right) - \left(-2 \right) \left(-1 \right) = 0 = 0$
A is not inventable by concllary l.